Spectral types of skewed Bernoulli shift
نویسندگان
چکیده
منابع مشابه
Bernoulli shift generated chaotic watermarks: theoretic investigation
The paper statistically analyzes the behaviour of chaotic watermark signals generated by n-way Bernoulli shift maps. For this purpose, a simple blind copyright protection watermarking system is considered. The analysis involves theoretical evaluation of the system detection reliability, when a correlator detector is used. The aim of the paper is twofold: (i) to introduce the n-way Bernoulli shi...
متن کاملSpectral Representations of the Bernoulli Map
We discuss spectral representations of the Perron-Frobenius operator, U, associated with a highly chaotic map. The continuous spectrum of U does not contain (except coincidentally) information about physically accessible quantities such as decay rates of correlation functions. We show constructively that decay rates can be incorporated into a generalized spectral decomposition of U if its domai...
متن کاملSpectral property of the Bernoulli convolutions ✩
For 0 < ρ < 1, let μρ be the Bernoulli convolution associated with ρ. Jorgensen and Pedersen [P. Jorgensen, S. Pedersen, Dense analytic subspaces in fractal L2-spaces, J. Anal. Math. 75 (1998) 185–228] proved that if ρ = 1/q where q is an even integer, then L(μρ) has an exponential orthonormal basis. We show that for any 0 < ρ < 1, L(μρ) contains an infinite orthonormal set of exponential funct...
متن کاملKrein Spectral Shift Function
A b s t r a c t . Let ~A,B be the Krein spectral shift function for a pair of operators A, B, with C = A B trace class. We establish the bound f F(I~A,B()~)I ) d,~ <_ f F ( 1 5 1 c l , o ( ) , ) l ) d A = ~ [F(j) F ( j 1 ) ] # j ( C ) , j= l where F is any non-negative convex function on [0, oo) with F(O) = 0 and #j (C) are the singular values of C. The choice F(t) = t p, p > 1, improves a rece...
متن کاملThe Spectral Shift Operator
We introduce the concept of a spectral shift operator and use it to derive Krein's spectral shift function for pairs of self-adjoint operators. Our principal tools are operator-valued Herglotz functions and their logarithms. Applications to Krein's trace formula and to the Birman-Solomyak spectral averaging formula are discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1999
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-99-04990-4